< 返回
bi项目中etl设计与思考

etl是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。etl是bi项目重要的一个环节。通常情况下,在bi项目中etl会花掉整个项目的1/3的时间,etl设计的好坏直接关接到bi项目的成败。

etl的设计分三部分:数据抽取、数据的清洗转换、数据的加载。在设计etl的时候我们也是从这三部分出发。数据的抽取是从各个不同的数据源抽取到ods(operationaldatastore,操作型数据存储)中——这个过程也可以做一些数据的清洗和转换),在抽取的过程中需要挑选不同的抽取方法,尽可能的提高etl的运行效率。etl三个部分中,花费时间最长的是“t”(transform,清洗、转换)的部分,一般情况下这部分工作量是整个etl的2/3。数据的加载一般在数据清洗完了之后直接写入dw(datawarehousing,数据仓库)中去。

etl的实现有多种方法,常用的有三种。一种是借助etl工具(如oracle的owb、sqlserver2000的dts、sqlserver2005的ssis服务、informatic等)实现,一种是sql方式实现,另外一种是etl工具和sql相结合。前两种方法各有各的优缺点,借助工具可以快速的建立起etl工程,屏蔽了复杂的编码任务,提高了速度,降低了难度,但是缺少灵活性。sql的方法优点是灵活,提高etl运行效率,但是编码复杂,对技术要求比较高。第三种是综合了前面二种的优点,会极大地提高etl的开发速度和效率。

一、数据的抽取

这一部分需要在调研阶段做大量的工作,首先要搞清楚数据是从几个业务系统中来,各个业务系统的数据库服务器运行什么dbms,是否存在手工数据,手工数据量有多大,是否存在非结构化的数据等等,当收集完这些信息之后才可以进行数据抽取的设计。

1、对于与存放dw的数据库系统相同的数据源处理方法

这一类数据源在设计上比较容易。一般情况下,dbms(sqlserver、oracle)都会提供数据库链接功能,在dw数据库服务器和原业务系统之间建立直接的链接关系就可以写select语句直接访问。

2、对于与dw数据库系统不同的数据源的处理方法

对于这一类数据源,一般情况下也可以通过odbc的方式建立数据库链接——如sqlserver和oracle之间。如果不能建立数据库链接,可以有两种方式完成,一种是通过工具将源数据导出成.txt或者是.xls文件,然后再将这些源系统文件导入到ods中。另外一种方法是通过程序接口来完成。

3、对于文件类型数据源(.txt,.xls),可以培训业务人员利用数据库工具将这些数据导入到指定的数据库,然后从指定的数据库中抽取。或者还可以借助工具实现,如sqlserver2005的ssis服务的平面数据源和平面目标等组件导入ods中去。

4、增量更新的问题

对于数据量大的系统,必须考虑增量抽取。一般情况下,业务系统会记录业务发生的时间,我们可以用来做增量的标志,每次抽取之前首先判断ods中记录最大的时间,然后根据这个时间去业务系统取大于这个时间所有的记录。利用业务系统的时间戳,一般情况下,业务系统没有或者部分有时间戳。

二、数据的清洗转换

一般情况下,数据仓库分为ods、dw两部分。通常的做法是从业务系统到ods做清洗,将脏数据和不完整数据过滤掉,在从ods到dw的过程中转换,进行一些业务规则的计算和聚合。

1、数据清洗

数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。

(1)不完整的数据:这一类数据主要是一些应该有的信息缺失,如供应商的名称、分公司的名称、客户的区域信息缺失、业务系统中主表与明细表不能匹配等。对于这一类数据过滤出来,按缺失的内容分别写入不同excel文件向客户提交,要求在规定的时间内补全。补全后才写入数据仓库。

(2)错误的数据:这一类错误产生的原因是业务系统不够健全,在接收输入后没有进行判断直接写入后台数据库造成的,比如数值数据输成全角数字字符、字符串数据后面有一个回车操作、日期格式不正确、日期越界等。这一类数据也要分类,对于类似于全角字符、数据前后有不可见字符的问题,只能通过写sql语句的方式找出来,然后要求客户在业务系统修正之后抽取。日期格式不正确的或者是日期越界的这一类错误会导致etl运行失败,这一类错误需要去业务系统数据库用sql的方式挑出来,交给业务主管部门要求限期修正,修正之后再抽取。

(3)重复的数据:对于这一类数据——特别是维表中会出现这种情况——将重复数据记录的所有字段导出来,让客户确认并整理。

数据清洗是一个反复的过程,不可能在几天内完成,只有不断的发现问题,解决问题。对于是否过滤,是否修正一般要求客户确认,对于过滤掉的数据,写入excel文件或者将过滤数据写入数据表,在etl开发的初期可以每天向业务单位发送过滤数据的邮件,促使他们尽快地修正错误,同时也可以做为将来验证数据的依据。数据清洗需要注意的是不要将有用的数据过滤掉,对于每个过滤规则认真进行验证,并要用户确认。

2、数据转换

数据转换的任务主要进行不一致的数据转换、数据粒度的转换,以及一些商务规则的计算。

(1)不一致数据转换:这个过程是一个整合的过程,将不同业务系统的相同类型的数据统一,比如同一个供应商在结算系统的编码是xx0001,而在crm中编码是yy0001,这样在抽取过来之后统一转换成一个编码。

(2)数据粒度的转换:业务系统一般存储非常明细的数据,而数据仓库中数据是用来分析的,不需要非常明细的数据。一般情况下,会将业务系统数据按照数据仓库粒度进行聚合。

(3)商务规则的计算:不同的企业有不同的业务规则、不同的数据指标,这些指标有的时候不是简单的加加减减就能完成,这个时候需要在etl中将这些数据指标计算好了之后存储在数据仓库中,以供分析使用。

三、etl日志、警告发送

1、etl日志

etl日志分为三类。一类是执行过程日志,这一部分日志是在etl执行过程中每执行一步的记录,记录每次运行每一步骤的起始时间,影响了多少行数据,流水账形式。一类是错误日志,当某个模块出错的时候写错误日志,记录每次出错的时间、出错的模块以及出错的信息等。第三类日志是总体日志,只记录etl开始时间、结束时间是否成功信息。如果使用etl工具,etl工具会自动产生一些日志,这一类日志也可以作为etl日志的一部分。记录日志的目的是随时可以知道etl运行情况,如果出错了,可以知道哪里出错。

2、警告发送

如果etl出错了,不仅要形成etl出错日志,而且要向系统管理员发送警告。发送警告的方式多种,一般常用的就是给系统管理员发送邮件,并附上出错的信息,方便管理员排查错误。

etl是bi项目的关键部分,也是一个长期的过程,只有不断的发现问题并解决问题,才能使etl运行效率更高,为bi项目后期开发提供准确的数据。